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Background: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can
degrade image quality.
Purpose: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps.
Study Type: Retrospective.
Population: Data from N = 221 adults, including patients with Alzheimer’s disease (AD), Parkinson’s disease, and traumatic
brain injury.
Field Strength/Sequence: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D
gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts.
Assessment: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by
two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cog-
nitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen’s d effect
size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings
for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric.
Statistical Tests: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson’s correlation. P < 0.05
was considered significant.
Results: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76–0.88) was similar (P = 0.56) to inter-rater cor-
relation (R = 0.81, CI: 0.73–0.87) for the 2D data. CBF reproducibility correlated negatively (R = �0.74, CI: �0.84 to
�0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59–0.82) as low QEI data was
discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77–0.92) of 3D ASL was similar
(P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64–0.87). The QEI correlated (R = 0.87, CI: 0.77–0.92) significantly bet-
ter with manual ratings than did an existing approach (R = 0.54, CI: 0.30–0.72).
Data Conclusion: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control.
Evidence Level: 2
Technical Efficacy: Stage 1
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Arterial spin labeled (ASL) perfusion MRI1,2 provides a
noninvasive quantification of regional cerebral blood

flow (CBF), which is an important physiological variable
reflecting cerebrovascular health and a biomarker of regional
brain function. ASL can be acquired as part of routine, non-
contrast brain MRI and therefore has become the modality of
choice to measure CBF in several large-scale multisite studies
with measurements of brain structure and function.3–6 ASL-
MRI has been validated against other established modalities
for measuring CBF7–10 and has been extensively used to
assess CBF changes in health and diseased conditions.3,6,10–14

ASL MRI data acquisition involves magnetically label-
ing inflowing arterial blood water protons proximal to the
brain, waiting for a brief period (post-labeling delay [PLD])
to allow the labeled blood to flow to the brain, acquiring a
brain image (labeled image), and subtracting the labeled
image from a control image that is acquired without labeling
arterial blood. The control-labeled difference image is propor-
tional to CBF and can be converted to a quantitative CBF
map using a proton density image with appropriate models
and assumptions.1,15 However, the control-label difference is
a small percentage of the background signal which results in
low signal to noise ratio in the CBF image. Additionally, sub-
ject motion, suboptimal choice of imaging parameters, and
other non-idealities inherent to MRI scanners can lead to
severe artifacts.4,16–20 Averaging multiple control-label pairs,
using advanced signal processing strategies,4,16–18 and utiliz-
ing advanced ASL techniques such as background suppressed
3D acquisitions21–24 can improve ASL image quality, but
considerable artifacts can still be present in resulting CBF
maps particularly in non-compliant patient populations or
when acquisition parameters are suboptimal.

Despite the advantages of ASL as a biomarker of cere-
brovascular health and brain function, poor image quality can
limit its sensitivity, potentially resulting in inconsistent or
erroneous conclusions. Hence, it is ideal to exclude CBF
maps of poor quality from analysis. However, manual quality
control (QC) of ASL CBF maps based on visual inspection is
subjective and susceptible to user bias, laborious to perform
in large samples and requires considerable expertise. There is
a need for an objective approach to evaluate the quality of
CBF maps that is scalable to a large sample size and can
potentially be applied to clinical scanning.

Prior work on ASL QC has mainly focused on identify-
ing and discarding outlier control-labeled image pairs based
on empirical methods,4,17,18,25 but not on assessing the qual-
ity of the final CBF map. One study has proposed computing
the standard deviation of the perfusion weighted time series,
dividing by the square root of the number of pairs to obtain a
measure of standard error, averaging across the whole brain,
normalizing by the whole brain averaged difference signal,
and thereafter mapping it to a score between 1 and 4 to
obtain the final quality index for the mean CBF map.26

However, normalized standard error cannot assess systematic
artifacts that are consistent in the time series such as those
caused by short PLD, or in datasets that include only one
output volume of the average control-labeled difference image
rather than the control-labeled image time series (eg, product
ASL on a GE MRI scanner). Moreover, temporal standard
error quantifies the quality of the raw data and does not cap-
ture the quality of the final map which can sometimes be of
better quality than the raw data through application of opti-
mized signal processing strategies.4,17,18

In this work, we aimed to develop a metric for auto-
matic quantification of the quality of a CBF map, which we
have referred to as an automated quality evaluation index
(QEI). Incorporation of features of a corrupted CBF map,
such as its dissimilarity with brain structure, large dispersion
of CBF values within tissues and presence of voxels with neg-
ative CBF values, which are commonly used in visual evalua-
tion of quality, can provide a realistic automated quality
evaluation strategy that can be applied to the final CBF
image.

Materials and Methods
MRI Data Acquisition and Processing
Deidentified MRI data from 221 participants obtained from differ-
ent projects in the local institute and from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) were used to develop and validate
the automated QEI. All data used in this study were acquired in
accordance with the Code of Ethics of the World Medical Associa-
tion (Declaration of Helsinki) and written informed consents were
obtained from all the subjects. Local institute studies were approved
by the Institutional Review Board (IRB) of the institute. The ADNI
study protocols were approved by the IRBs associated with each clin-
ical site. All data were acquired on 3 T Siemens MRI scanners.
ADNI data used for this study was acquired in ADNI-2, the third
phase of ADNI (after ADNI and ADNI-GO). ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
assess whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment, and early Alzheimer’s disease (AD). More information
can be obtained at http://adni-info.org.

The data used to develop the QEI included N = 101 ASL
scans obtained using 2D pulsed ASL (PASL) or 2D pseudo continu-
ous ASL (PCASL) and acquired using gradient-echo echoplanar
imaging from young and older cognitively normal (CN) participants,
patients with Mild Cognitive Impairment, Alzheimer’s disease,
Parkinson’s Disease, and traumatic brain injury, acquired at the local
institute and from the ADNI study. The scans were chosen to
encompass a wide range of artifacts, but not considering any disease
status. The acquisition details are provided in Table 1.

The data used to validate the QEI included ASL MRI data
from the ADNI study in N = 53 CN older subjects
(72.9 � 7.4 years, 29 female) with low amyloid beta deposition
(amyloid negative or Aβ�) acquired at baseline and at 3-months
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visit. We also considered the ADNI baseline ASL scans from
N = 27 CN subjects (age: 79.5 � 6.0 years, 14 female) who have
elevated cerebral amyloid beta deposition levels (amyloid positive or
Aβ+) suggesting preclinical Alzheimer’s disease. Amyloid status (Aβ
+ or Aβ�) was determined based on Florbetapir positron emission
tomography scans by computing the mean Florbetapir uptake from
gray matter in a composite region of interest (ROI) relative to
uptake in the whole cerebellum and dichotomized using a cut-off
value of 1.11.27,28 Finally, we used ASL data from N = 50 addi-
tional participants acquired with a state-of-art ASL MRI sequence
consisting of an unbalanced PCASL labeling with a labeling time of
1.8 seconds and PLD of 1.8 seconds and background suppressed
1-D accelerated 4-shot 3D spiral spin-echo image acquisition with
2.5 mm isotropic resolution.29

CBF maps were generated using standard processing and
quantification models as recommended by Alsop et al.1 Briefly, the
processing included motion correction of the control-label time
series and application of the single-compartment CBF quantification
model.1 Mean CBF was obtained by discarding outlier volumes from
the time series using a structural correlation based outlier rejection
technique and a subsequent voxel-wise robust Bayesian based estima-
tion procedure (combined method referred to as SCRUB: Structural
Correlation and RobUst Bayesian-based estimation).4,16 The CBF
maps were smoothed using a Gaussian kernel with a full width at
half max of 5 mm isotropic.

The development and validation of the QEI used structural
information derived from T1-weighted MRI acquired in the same
subjects. Structural images were probabilistically segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF)

using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), and coregistered
to the space of the corresponding CBF maps using the boundary-
based registration implemented in FSL (https://fsl.fmrib.ox.ac.uk/).
The probabilistic tissue segmentations assign each voxel a value
between 0 and 1, which can be interpreted as the fraction of the spe-
cific tissue in that voxel. We also created binarized tissue specific
masks by thresholding the tissue probabilistic maps to 0.9, which
indicates more than 90 percent tissue in that voxel. These masks
were used to obtain mean and variance of the CBF values in GM,
WM and CSF that were used in both the QEI development and val-
idation stages. Here “CBF values” indicates all the voxel values
within the specific masks in the CBF image while “mean CBF”
refers to the average of the CBF values within the mask.

Developing the Automated QEI
This step consists of manual rating of N = 101 CBF maps detailed
in Table 1, extracting features from the CBF maps, modeling the
relationships between the features and the ratings, and combining
them into a single metric representative of the quality of the
CBF map.

MANUAL RATING. Two neuroradiologists (RW with 23 years of
experience and SAN with 12 years of experience in interpreting ASL
images) rated the 101 CBF maps shown in Table 1 based on visual
inspection. The maps were rated based on the level of image artifacts
relative to plausible CBF information on a scale between 1 and
4, corresponding to unacceptable (1), poor (2), average (3), and
excellent (4) quality. These manual ratings were used to develop
and validate the ASL QEI as detailed below.

TABLE 1. Details of ASL Data Used to Develop the Automated ASL QEI

Data
Source Diagnosis/Condition

Labeling
Method

LT/PLD
(Second)

Imaging
Resolution (mm3)

Number of
Subjects

ADNI Cognitively normal
older subjects

PASL 0.7/1.9 4.0 � 4.0 � 4.0 (25%
distance factor)

10

ADNI Alzheimer’s Disease PASL 0.7/1.9 4.0 � 4.0 � 4.0 (25%
distance factor)

11

Local
institute

Cognitively normal
older subjects

PCASL 1.5/1.5 3.4 � 3.4 � 5.0 (20%
distance factor)

6

Local
institute

Mild cognitive
impairment

PCASL 1.5/1.5 3.4 � 3.4 � 5.0 (20%
distance factor)

20

Local
institute

Parkinson’s Disease PCASL 1.5/1.5 3.4 � 3.4 � 5.0 (20%
distance factor)

17

Local
institute

Traumatic Brain Injury PCASL 1.5/1.5 3.4 � 3.4 � 5.0 (20%
distance factor)

11

Local
institute

Middle aged adults PCASL 1.5/1.5 3.4 � 3.4 � 5.0 (20%
distance factor)

26

Total 101

ADNI = Alzheimer’s Disease Neuroimaging Initiative; LT = labeling time; PASL = pulsed ASL; PCASL = pseudo continuous ASL;
PLD = post-labeling delay.
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PROPOSED ASL QEI. The proposed ASL QEI was designed to
be a numerical value between 0 and 1 with a higher number imply-
ing a higher quality CBF map. The QEI was designed to quantify
features of CBF maps that are typically used during manual QC
based on visual inspection. Specifically, the QEI quantifies three fac-
tors that characterize valid CBF maps: 1) the similarity between
brain structure and CBF (structural similarity, since structure and
function are normally correlated), 2) variability of the CBF values
across voxels within each tissue (spatial variability, since high vari-
ability suggests noisy data and/or insufficiently long post-labeling
delay), and 3) the presence of negative CBF values in GM (since
GM CBF is expected to be higher than CBF in other regions and
less likely to contain negative values due to noise). This definition of
the QEI requires segmenting the structural images into GM, WM,
and CSF and an accurate coregistration of the structural and the
ASL image.

Structural similarity. To model the relationship between CBF
values and brain structure, we constructed a structural pseudo-CBF
(spCBF) map using a weighted sum of the GM and WM tissue
probability maps with weights of 2.5 and 1 for GM and WM
respectively since CBF in the GM is on an average about 2.5 times
higher than white matter.11,30 Although partial volume effects and
exchange of labeled spins between brain tissue and CSF compart-
ments31 can contribute to very subtle ASL signal changes in CSF,
we are ignoring these effects for the purpose of computing spCBF
and assuming that the CSF is not perfused. The Pearson’s correla-
tion coefficient between spCBF and the actual CBF map for each
subject (denoted by ρss below where ρ is the correlation coefficient
and ss is the structural similarity) was generated as one analytic met-
ric used in the development of the QEI.

Spatial variability. Although CBF varies within tissue types,
abnormally large spatial variability can occur because of extremely
large or small (often negative) values resulting from motion artifacts
(Fig. 1a). Use of a PLD significantly shorter than the time required
for the labeled blood to travel to the voxel of interest (arterial transit
time) can also lead to large signals in certain regions of the brains

due to retained label in arteries and apparent hypoperfusion in other
regions of the brain (Fig. 1b). While such signal variability suggests
long arterial transit time and has clinical significance,32 the resulting
CBF map does not provide an accurate measure of cortical CBF and
can bias regional or voxel-wise statistical analyses. To represent this
artifact, we considered the index of dispersion or dispersion index
(variance/mean, denoted by DI below) using the pooled variance of
the CBF values in GM, WM, and the CSF masks and normalized
by the mean GM CBF as one of the features that was used in the
QEI metric. The pooled variance (V) was defined as

V ¼
P3

k¼1 Nk�1ð ÞV kP3
k¼1 Nk�1ð Þ ,

where Vk is the variance of the CBF values in the kth tissue
(k = GM, WM, CSF) and Nk is the number of voxels in that tissue.
We did not use the coefficient of variation (CoV), defined as stan-
dard deviation/mean, as CoV is scale invariant, and thus CBF scaling
will not affect the measure. In contrast, the dispersion index will
penalize very large CBF values that can result from incorrect scaling
of the data.

Negative GM CBF. As a physiological quantity, CBF should be
strictly positive in intact brain parenchyma. However, artifacts in
CBF can lead to non-physiological negative CBF values, most com-
monly in a group of spatially neighboring voxels. Therefore, quanti-
fication of voxels with negative CBF can provide an indication of
presence of artifacts and hence we considered proportion of voxels in
GM with negative CBF (denoted as PnGMCBF below, P is the proba-
bility or proportion, and nGMCBF is negative GM CBF) as the
final metric that was used in the QEI development. We did not con-
sider voxels in white matter as they have lower CBF and therefore a
higher probability of having negative voxels due to thermal or physi-
ological noise.

Figure 2 shows the scatter plots between the three metrics and
the average ratings from the two raters, where the ratings were nor-
malized in [0,1] range, to have the resulting QEI in the same range.

FIGURE 1: Examples of large spatial variability in arterial spin labeling derived cerebral blood flow (a) due to motion or (b) the post-
labeling delay (150 msec) being significantly shorter than the arterial transit time resulting in labeled signal retained in the arteries
instead of the tissue parenchyma while imaging.
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The ratings approximately follow a (1-exp(�αxβ)) relationship with
structural similarity and an exp(�αxβ) relationship with the other
two metrics, where x stands for the various metrics. Consequently,
we fitted models of these forms to the data to compute α’s and β’s
for each criterion (Fig. 2). The choice of the exponential functions
was to limit each component of the QEI in [0,1] range. The final
QEI was computed as the geometric mean of the three metrics.
Specifically,

QEI¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�3ρss2:4
� �

e� 0:1DI 0:9þ2:8pnGMCBF
0:5ð Þ3

q
:

Although other averaging process such as arithmetic or har-
monic mean could be used, we specifically selected the geometric
mean because it is in between the two measures in sensitivity to the
lowest of the components and penalizing the automated QEI if one
of the metrics is small. Additionally, instead of fitting the ratings
with all the features at the same time, we fitted them separately to
identify the contributing factor of the low QEI score. A schematic
diagram of the proposed QEI is shown in Fig. 3.

Validation of the Proposed QEI
We followed several direct and indirect strategies to validate and
demonstrate the usage of the proposed QEI.

LEAVE-ONE-OUT CROSS VALIDATION. We used a leave-
one-out cross validation strategy in which we trained the algorithm
using all but one sample from the N = 101 scans used to develop
the QEI (detailed in Table 1), estimated the parameters and com-
puted the QEI for the left-out cases. Thereafter we computed the
Pearson’s correlation coefficient (R) between these computed QEIs
of the left-out cases with the average of the corresponding visual rat-
ings across the folds and compared that to the inter-rater correlation
using the method of Steiger33 (details in Statistical Analysis section).
Additionally, we obtained the receiver operating characteristics
(ROC) curve for QEI to identify maps judged as average and

excellent by both the raters, computed the area under the ROC
curve (AUC) of this classification and obtained a QEI threshold
from the curve.

TEST–RETEST RELIABILITY. Here, we considered the baseline
and 3-months ASL MRI data from the ADNI study from N = 53
Aβ� cognitively normal (CN) older subjects. CBF values derived
from ASL images in CN people acquired 3 months apart would not
be expected to change beyond physiological variability unless driven
by artifacts in the images. Hence, we hypothesized that the test–
retest reliability would be higher if the CBF map in both the acquisi-
tions were of high quality, and it would degrade if at least one of the
acquisitions was of poor quality, where the quality was quantified by
the QEI. Mean CBF values in 116 ROIs from the Automated Ana-
tomical Labeling (AAL) atlas34 were extracted from ASL data of each
subject in the two sessions. For each ROI and each subject, the level
of agreement between CBF values was assessed using the CoV. The
CoV values for the different ROIs for the specific subject were
combined by computing their root mean square to obtain a three-
months reliability measure of the two CBF maps of the specific sub-
ject. As opposed to computing a CoV based on a single measure of
global CBF, this approach provides quantification of reliability across
all gray matter regions. The computed CoV for each subject was log
transformed because of its right skewed distribution and was ana-
lyzed as a function of the poorer QEI between the two sessions using
Pearson’s correlation coefficient as a summary metric for the rela-
tionship. We also divided the data into two groups based on the
QEI threshold derived in the previous section and computed
the Pearson’s correlation coefficient for each group. Note that the
AAL atlas provides segmentation of the GM; we did not consider
any WM ROI as the ADNI PASL data has a relatively low signal to
noise ratio that which is expected to be even lower in the WM.

GROUP DIFFERENCE BETWEEN Aβ� AND Aβ+
COGNITIVELY NORMAL SUBJECTS. We statistically compared
the mean GM CBF of the N = 53 Aβ� with the N = 27 Aβ+ CN
subjects using 2-sample t test after covarying for age and sex. We

FIGURE 2: Scatter plots of normalized average rating of the two raters with (a) correlation between cerebral blood flow (CBF) and
structural pseudo CBF, (b) index of dispersion or dispersion index pooled across the different tissues, and (c) probability of negative
CBF values in gray matter. The fits correspond to (a) 1-exp(�3.0x2.4), (b) exp(�0.1x0.9), and (c) exp(�2.8x0.5) respectively, where the
values were obtained using a nonlinear least square fit.
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also computed the Cohen’s d effect size of the comparison, which
was defined as the difference between mean GM CBF averaged
across subjects of the two groups divided by the pooled standard
deviation of the two groups. Next, we assessed whether discarding
data with poor quality could increase effect size. For this, we itera-
tively discarded CBF maps (one subject in each iteration) based on
lowest QEI values and recomputed the effect sizes for GM CBF dif-
ferences between the two groups. This was made possible since the
automated QEI provided a ranking allowing choosing the data with
worst quality that was discarded. Pearson’s correlation between the
iteration number and the effect size was considered as a summary
statistic.

ASSESSING THE QEI IN BS 3D ACQUISITIONS. To assess
the utility of QEI for data acquired with a state-of-art ASL sequence,
the two neuroradiologist also rated N = 50 CBF maps of variable
quality acquired with the 3D BS PCASL sequence,29 using the same
rating scale of 1–4. We computed the Pearson’s correlation coeffi-
cient between the automated QEI and the average of the two raters
and compared that to the inter-rater correlation using the method of
Steiger.33

COMPARISON WITH EXISTING AUTOMATED ASL
QUALITY INDEX. Finally, we compared our QEI to the method

included in ASL-MRICloud,26 which is the only other available
automated metric that assigns a scalar value to the quality of the
CBF image. We referred the reference method as ASL-MRICloud
quality index (ASL-MC QI). We computed ASL-MC QI for the BS
3D ASL data and computed the correlation between that and the
average of the manual ratings. The ASL-MC QI assigns a value of
1 (excellent) to 4 (poor) to an ASL image. To be consistent with the
paper where higher value represents a better CBF map, we modified
the definition of the ASL-MC QI by reversing its sign, which
resulted in a positive correlation with the manual ratings. We com-
pared this correlation with that obtained between the manual ratings
and the proposed method using the method of Steiger.33

Statistical Analysis
All statistical analyses were performed in MATLAB Version:
9.14.0.2206163 (R2023a), Natick, Massachusetts, USA: The
MathWorks Inc.; 2023. The comparisons of the correlation coeffi-
cients were performed using the method of Steiger33 as implemented
using the online software developed by Lee and Preacher.35 The
method converts each correlation coefficient into a z-score using
Fisher’s transformation, computes the asymptotic covariance of the
estimates and subsequently uses the quantities in an asymptotic z-
test. The details of the other statistical analyses have been listed

FIGURE 3: A schematic diagram of the proposed quality evaluation index (QEI).
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above under each subsection. P < 0.05 was considered statistically
significant.

Results
Figure 4 shows representative CBF maps rated as excellent,
average, poor, and unacceptable by both raters and the
corresponding automated QEIs. Figure 1a shows a representa-
tive slice from an ASL CBF map data that was contaminated
with motion, resulting in a markedly reduced QEI of 0.3.
Figure 1b shows a representative slice from an ASL CBF map
that was erroneously acquired with a PLD of 150 msec
instead of 1500 msec, resulting in a reduced QEI of 0.25.

Leave-One-Out Cross Validation
In the leave-one-out-cross validation analysis, the correlation
between the automated QEI and the mean of the two sets of
ratings was 0.83 (CI: 0.76–0.88), which was similar
(P = 0.56) to the correlation between the two sets of human
ratings (0.81, CI: 0.73–0.87). Figure 5a shows the ROC
curve corresponding to distinguishing average and excellent
CBF maps from the rest (AUC = 0.96). The dotted line in
the plot shows the point corresponding to a 99% sensitivity
and 79% specificity, and a QEI value of 0.53.

Test–Retest Reliability
Figure 5b shows a scatter plot of the logarithm of subject spe-
cific CoV, representing reliability of the two ASL scans from
individual subjects acquired 3-months apart, vs. the poorer
QEI of the two scans. There was an overall negative correla-
tion between the quantities with a correlation coefficient of
�0.74 (CI: �0.84 to �0.59). When the data was divided
based on the QEI threshold of 0.53 derived from the ROC
curve, the correlation was higher with a Pearson’s correlation
coefficient of R = �0.79 (CI: �0.90 to �0.61) for
QEI <0.53, while the correlation was both attenuated and no
longer statistically significant for QEI ≥0.53
(R = �0.34, P = 0.13).

Group Difference Between Aβ� and Aβ+
Cognitively Normal Subjects
Figure 6a shows the histogram of the QEI values for each of
the two groups of 27 Aβ+ and 53 Aβ� ADNI participants
expressed as a percentage in each group. Considering all par-
ticipants, there was no significant difference in GM CBF
between the two groups with a small effect size of 0.18; here
a positive effect size implies higher CBF in the Aβ+ group.
Figure 6b shows the results of the group comparisons at each

FIGURE 4: Examples of (a) excellent (QEI = 0.87), (b) average (QEI = 0.68), (c) poor (QEI = 0.19), and (d) unacceptable (QEI = 0.03)
cerebral blood flow maps obtained with non-background suppressed 2D ASL data, where the two raters provided the same ratings.
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iteration when the participants with the lowest QEI were iter-
atively excluded. The effect size of the group comparisons is
shown in blue and there was an overall trend of an increase
in effect size when data of poor quality was iteratively
excluded until the point where loss of sample size begins to
dominate. The Pearson’s correlation coefficient between the
iteration number and the effect size was 0.72 (CI: 0.59–
0.82). The QEI of the discarded subjects at each iteration is
shown in green and the proportion of retained Aβ� subjects
is shown in brown. The uncorrected P values of the compari-
sons for each step of discarding subjects are shown in red.
The group difference, as represented by the P value was not
statistically significant with all subjects but became significant

when the data of worst quality were discarded; it remained or
tended toward statistical significance until the point when the
sample size decreased by more than 75%. The proportion of
the amyloid negative subjects remained consistent (range:
0.64–0.82) as participants were excluded based on
lowest QEI.

Assessing the QEI in BS 3D Acquisitions
The correlation of the ratings of the two raters for the
N = 50 BS 3D ASL scans was 0.78 (CI: 0.64–0.87). In com-
parison, the correlation between the automated QEI with the
average of the two sets of ratings was 0.86 (CI: 0.77–0.92),
which was statistically similar (P = 0.09) to the inter-rater

FIGURE 5: (a) Receiver operating characteristic (ROC) curve corresponding to distinguishing Average and Excellent CBF maps from
the rest as judged by both the raters. The intersection of the dotted lines shows the operating point and corresponds to a sensitivity
of 0.99, specificity of 0.79 and QEI = 0.53. (b) Scatter plot of minimum of QEI for the two sessions (worse of the two CBF maps)
vs. logarithm of Coefficient of Variation (CoV). Correlation coefficient between QEI and log(CoV) was �0.74 (P < 0.0001). The plot
also shows two fitted regression lines in subsets of data divided based on a QEI threshold of 0.53.

FIGURE 6: (a) Histogram of the QEI values of the amyloid negative and positive participants from ADNI expressed as a percentage
of the total in each group. (b) Effect size and P value (along with P = 0.05) corresponding to two sample t test in differentiating the
two groups as data of poor quality are iteratively discarded. The plot also shows the QEI value of the excluded participants and the
proportion of amyloid negative participants in the analysis.
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correlation. Figure 7 shows examples of automated QEI
values for different rating categories where the two raters pro-
vided the same ratings.

Comparison with Existing Automated ASL
Quality Index
We discarded the data of two subjects, one for having a single
control-label pair for which the computation of ASL-MC QI
was not possible, and the other for having overall negative
mean CBF due to extensive artifacts leading to out of bound
ASL-MC QI. For the remaining 48 subjects, the correlation
between ASL-MC QI and the average human rating was 0.54
(CI: 0.30–0.72) while that between the QEI and the average
human rating was 0.87 (CI: 0.77–0.92), the latter being sig-
nificantly higher than that obtained with ASL-MC QI.

Discussion
This work proposes an automated QEI for ASL-derived CBF
maps using a simple algorithm reflecting basic features of
high-quality CBF maps and trained using manual ratings
from neuroradiologists. The QEI showed excellent agreement
with observer ratings with a correlation similar to inter-rater
agreement. Using an indirect validation method, CBF maps

with higher quality as determined by the automated QEI
showed better test–retest reliability with ADNI data acquired
3 months apart. We also showed the usefulness of the metric
in discarding data from statistical analysis to compare preclini-
cal Alzheimer’s subjects with older CN participants. Finally,
we demonstrated the applicability of the QEI to a state-of-
the-art BS 3D data and its superiority over a reference
method. Data quality is increasingly recognized as one of the
most important confounders in brain imaging research,36 and
the proposed QEI, being an objective measure, is expected to
improve the rigor and reproducibility of ASL MRI research.

Manual QC is common in studies involving ASL but is
often subjective. Raters can differ in their assessments of
acceptable artifacts, which might also depend on the method
of visualization. As expected, the correlation between the rat-
ings of the two raters was not perfect. Although not explicitly
tested as a part of this study, the intra-rater agreement is also
not expected to be perfect. Additionally, the agreement can
be lower with raters new to the field who have limited experi-
ence with ASL CBF maps. The automated rating, being an
objective measure, has the advantage of perfect reproducibility
thus increasing scientific rigor, though there can potentially
be minor differences because of differences in software

FIGURE 7: Examples of (a) excellent (QEI = 0.89), (b) average (QEI = 0.66), (c) poor (QEI = 0.46), and (d) unacceptable (QEI = 0.02)
CBF maps obtained with background suppressed 3D ASL data, where the two raters provided the same ratings.

9

Dolui et al.: Automated ASL Quality Evaluation Index

 15222586, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.29308 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



versions across users. The QEI can also be useful for detecting
errors in registration of structural and ASL CBF images in
automated image processing pipelines as such misregistration
is expected to assign low QEI to the CBF maps because of
the dependence of the QEI on structural similarity and the
use of masks derived from structural images to derive mean
CBF in different tissue types. This is important as such mis-
registration will result in incorrect extraction of CBF values
from different ROIs that will affect subsequent statistical ana-
lyses. The QEI can also potentially identify systematic errors
in acquisition, such as motion artifacts or incorrect sequence
parameters in specific sites of a multi-site study. Systematic
low QEI in specific sites can help guide protocol modifica-
tions that can include use of additional measures to restrict
head motion or modification of imaging parameters, which
can preserve data for analysis.

We performed indirect validation of the QEI by
assessing if the test–retest reliability from data acquired
3-months apart decreases with the presence of image artifacts
in at least one of the scans. The negative correlation between
the automated QEI and the CoV, which quantified test–
retest reliability, shows the efficacy of the QEI in detecting
artifacts. When the data was divided based on a QEI thresh-
old, we observed that the correlation was more pronounced
for lower QEI compared to higher QEI data. This shows that
the reliability was worse when one of the scans was consider-
ably poor, while the improvement in reliability was subtle
when the data achieved a certain quality.

The usefulness of the automated QEI as a quality con-
trol measure was shown by comparing the mean CBF in
GM between subjects with preclinical AD and cognitively
normal participants without evidence of early AD pathologic
change from the ADNI study. Prior studies showed hyper-
perfusion and hypermetabolism37–39 in Aβ+ CN subjects
compared to Aβ� controls and we aimed to replicate the
results in the ADNI cohort. The automated QEI provided a
ranking of the quality that would otherwise have required a
manual quality control. Although, there was no significant
difference between the two groups with a weak effect size
when data from all the participants were considered, there
was a trend of increase in effect size with higher CBF in pre-
clinical AD when data of poor quality were iteratively
excluded. Although the successive tests were not corrected
for multiple comparisons, the findings illustrate the impor-
tance of excluding poor data from statistical analyses. Most
experimental designs rely on increasing sample sizes to
increase sensitivity for group effects; however, we showed
here that discarding data of poor quality can increase effect
size in statistical comparisons. Using the approach in other
ASL datasets may improve sensitivity for testing hypotheses
about group differences. Although the results showed that
the analysis benefitted by discarding a large proportion of
ADNI PASL data which has relatively low signal to noise

ratio, a much lower percentage of ASL data gets excluded
from any analysis in general.3,6,40

The QEI was trained on non-BS 2D data which is
expected to have higher level of artifacts compared to
background-suppressed ASL data. However, we also demon-
strated its applicability to BS 3D data in a small sample where
the agreement between the QEI with manual rating was simi-
lar to inter-rater agreement. In addition, the QEI has been
applied to studies with 3D background suppressed ASL data
acquired both in the local institute and in multisite studies
such as the Multi Ethnic Study of Atherosclerosis (MESA)
and the Epidemiology of Diabetes Interventions and Compli-
cations (EDIC) study (data processing, QC and analysis in
progress) to identify corrupted data and the agreement of the
CBF maps with the automated QEIs have been manually ver-
ified. Nevertheless, future work is required to identify artifacts
specific to 3D acquisition.

When comparing the proposed QEI with the auto-
mated ASL quality index included in ASL-MRICloud, we
obtained significant improvement in agreement with manual
ratings using our method. This is expected since the reference
method only considers the temporal variability of the data
while our method considers more intrinsic characteristics of a
CBF map.

Limitations
First, since simple smoothing of the CBF maps results in
reduced noise and image artifacts that improves values of the
metrics used in the QEI, the proposed QEI is sensitive to
smoothness of the data with higher smoothness receiving a
higher QEI. Therefore, the QEI does not necessarily assign
higher scores to CBF maps with greater spatial resolution. So,
although the QEI can rate the quality of any CBF map, it
cannot necessarily be used to directly compare data quality
across protocols and analytic pipelines. Matching of imaging
protocol and processing, particularly the CBF map smooth-
ness, should result in more comparable QEI values across
studies. Currently our recommendation is to smooth the
CBF maps by a 5 mm isotropic Gaussian kernel before com-
puting the QEI as that was used to derive the QEI parameters
and the cut-off value. Although the QEI distribution and
cut-off can vary based on the acquisition/smoothing of the
dataset, a cut-off value of 0.5 has worked reliably for a wide
variety ASL protocols in multiple studies. Note that a lower
cut-off value can increase the sample size and hence can be
useful for data of poor quality to attain a certain sample size.
On the other hand, a higher cut-off can obtain a finer tuning
for CBF maps of better quality. Second, the definition of
QEI requires the availability of a high-resolution structural
image. Although this is common in research settings that are
the major application of the QEI, this constitutes a limitation
of the technique. Third, the QEI value relies on the quality
of the coregistration between the structural and the ASL
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images and hence can assign a lower QEI to good CBF map
with poor registration with the structural image. However, as
discussed earlier, since the automated analysis pipelines typi-
cally also require accurate coregistration between the struc-
tural and the ASL images, this is a potential benefit as
assignment of lower QEI and subsequent flagging of the CBF
maps will help in identifying and correcting the error. Fourth,
the QEI can potentially result in low values in the presence
of large structural lesions. However, we do not expect a dras-
tic reduction of the QEI in this situation as the artifactual fac-
tors that the QEI penalizes generally results in larger intensity
changes than that resulting from structural lesions. Fifth, the
QEI provides a global quality measure of the CBF map; there
can be local artifacts that can still bias statistical analyses if
mean CBF in the artifactual region is considered in the analy-
sis and the QEI is above the chosen cut-off value for dis-
carding CBF maps. Sixth, the QEI was developed based on a
relatively small sample size of training data and manual rat-
ings. Finally, the QEI reported here was developed based on
training with data from Siemens scanners and a limited range
of imaging protocols. In future work, we aim to extend this
method by incorporating more extensive types of data from
multiple scanner platforms.

Conclusions
We designed, optimized, and validated an automated QEI for
ASL MRI that is sensitive to typical artifacts in CBF maps
and performs comparably to manual quality assessments, pro-
viding an objective means of rapidly assessing quality of
CBF maps.
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